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Fig. 1 Tectonic setting, tectonic divisions and seismic stations used in the study in the Tongling area
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The red and blue triangles indicate the seismic stations deployed in 2022 and 2023, respectively. Fault: CJF—Changjiang Fault (inferred) ;
LHTD— Lujiang-Huangguzha-Tongling detachment (inferred) ; MTF-—main thrust fault (Dinggiao-Daihui Fault) ; MZF-—Muzhen Fault;
TCF—Tongling Central Reverse Fault. Fold: FHSS—Fenghuangshan syncline; TGSA-—Tongguanshan anticline; YSA— Yongcungiao-

Shujiadian anticline; ZCS—Zhucun syncline
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Fig. 2 Comparison of dispersion energy diagrams for cross-correlation signals between stations

TL40 and TL74 before (a) and after (b) phase-matched filtering in Tongling area
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Fig. 3 Distribution of seismic rays for surface wave data at different periods in Tongling area
Ca~D AN t =1 5.3 s, 55, 7 s MBI LR A0 5 (o) Ry RIS 1~20 s (1% 17 8 25008 119 b 72 S 2 i

(a~d) are the surface wave ray path distributions for periods of t=1 s, 3 s, 5 s, 7 s, respectively; (e) is the number of seismic rays for

surface wave data with periods of 1~20 s

3 ik

FATRH T Feng Mei et al. (2010) # H i) = 4
AT 98 J2 1 AR 5k i BOAT 5 DX Bt o 2 454 . 17
25 SO VE AT P = 4 A 7 A 1Y — 4R R R A A A
B I A AL T L AT LA TR] IR AR [ R ) S 2 R
DA 3SR HBORE 1) R0 T [ AH BB R ) = A R B R AR AR
2T B ANMYAEFE 35 (Assumpcao et al. ,2013) .5 %
(An Meijian et al. , 2015) ., 7 % = Jit (Feng Mei et

al. , 2011, 2020) F1 ¥ E % b (Feng Mei et al. ,
2023) % X 3k ROEEF 5% v L 1 EL A e 8 R 28 28 BT 3R
7 (Ramos et al. ,2016) , ¢ 71 WF 2477 (Feng Mei
et al. ,2021) FIAN 1L 75 i G5 M 45, 2023) %8 b R
F 5 oA BAR G 19 1 FH S0 TIE . 3% 1% A S AR Ji B T
WEHG Ry 4R B LR Dy R A

Gl

Horfr, G JR A T I A% i 6 A R I Ik B (UD 5



8 R R 2 A e A X b 5T ARl

JEE 25 A R AT 5

P (B i 4 15 B (d B/d U BY K B F i 48 14
CHFRBURAZ ) . d 2 55 T D UL I A G 1 B0 % it
ABJE AR R T = 2 1 I 3 B2 ) B AR (B, ) 4R Bl L B
FRAERI G, S & A A 25 m) | 26 ) 3R [7] — By
Tofs 5 RSP 20D DU Ab 0 L A 2 S A AE AR S 1 5 00
MLA Z M ARCE R FTLAVA 1 G RS 4
%%?Eﬁmmﬁmw%%ﬁﬁ&@ﬁﬂm%%
Ho XA 1 HEAT % AR BT T SR IR I8 3 A B
IMﬁﬁ&EE&ﬂW:ﬁﬁ*MDohﬁﬂﬂﬁﬁﬁ
MR IR A OB AR 1 8 4 B/dU 4y,
RN R N iR oS A= RS VR E (Y Ee il & N
i, BT 75 3 B i

R Al YO0 00 5 4R 2 T 43 A7 4 D0 B 5 DX 9 40 43k
Ze A 1) 3408 0. 04°, ] B 0. 5 km /) =4 ¥
M o 25 IS0 I BN A3 A S AR R R 3 s, JRBIR
T 10 s B LI EICHE 12t R K5 T LA AR SR ASE Y oz 35 8
#i5E A 10 km PAER Y e, A SCR A CRUSTL 0

(Laske et al. ,2012) b 5¢ il 3 B A S = 4E40) 45 455
R, RS R T AR 5T X 4 26 3 1
K 1° 4 47 #1245 T CRUSTL. 0 # #4 o fg — A 54
& s B LA b6 A B AE 2 AN 0F 58 X L2 A R A, B
ANBEL AL AR A4k, BEAk . T CRUSTL. 0 %
BRAAE LT 5T =2 I DAX) AR SR A
FUETRBE 10 km 11 75 - 90 1A AR 5D % 38 A 38 A4S BT TR
JE B35 CRUSTL. 0 #5744 |- M52 5 5 A1 W] L B A
[SERE R R A TRerX f

4 BRBIPEAG

FRATR A 138 5328 % 0 sz b, DX 1% 3 1) v 98 A ok
FESEAT T = 4 B ik o R S . 7R R R SOl 45 R 2
B AR AT T A SR IRAL . B 4 ORI IR
PRI (L2 ) g 3 A AR (20 ) X AT 725 D 4% W1 T 4 1
M (=M MM ER N . LA, i TR0 a e
ARUTE AW ST Xy ] — A B A (R 2R, BV i R

Pl 4 b DX S A 2R ) Xof U 2% UL A3 i 2 (= ) i 480 S 401

Fig. 4 Example of the fit between the inverted model (red) and four observed dispersion curves (triangles)in Tongling area

ZETT A AT P 7% DU A SR 8 0 ST S B AR 1A . T I P B bR S L 4 P A B A A S — — X R

22 L

TG T bR T AR T 5 % 58 L4 R

The inset in the lower left corner shows the ray path distribution for the four dispersion curves. The labels in the subplots correspond to those

on the paths in the inset, and the lower right corner of each subplot annotates the improvement in fitting error relative to the reference model
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Fig. 5 Statistics of the root-mean-square (RMS) fitting error between the initial model (black line) and the inverted

model (gray line) to all observed surface wave group velocities at different periods in Tongling area
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Fig. 6 S-wave velocity distribution at different depths in Tongling area
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(a~d) show the 3D shear wave velocity distribution at depths of 2, 3, 4 and 5 km in Tongling area, respectively
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Fig. 7 S-wave velocity distribution across different profiles in Tongling area
I 7b~d TR MTF 7Rk B T B R4, (2015)
The occurrence of MTF in Fig. 7b~d are from Lii Qingtian et al. (2015)
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Fig. 8 Three-dimensional visualization of the S-wave velocity in Tongling area
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8), #lH C—C Nl M B R 1~2 km Z 1]y
HAK ,2~3 km Z [A] S I B4, BIE A ROIR ™ 3 (&
Te, B/ 8) . &5 G B IR R - T 4 A P B R R
J5 1~2 km B EE Z B 0 = BAA 0325 e b PR Ak
O R JEE 1) e SR A AH O

] A2 b DX 56 B A Rt R 0 % ) T 48 S A
Wiz B REC T 7 A7 7 o BEL AR AIE 40 2 193 JEC T 0 ey I 0%
X 4 km ¥ E T HAF7E 5 B & (Tang Jingtian et
al. ,2013; Zhang Kun et al. ,2021) , X W A X A—
A'HITE 3 km PRJE T 29 4.0 km/s 19y AR, Y
B—B'Fl C—C" 3 1 % o A & 14 K Ml H i I 2 ) T
1 km RE T I AF1E & AL (Tang Jingtian et al. ,
2013) , 5 SCAR AT A X R 50 TR 5 R i A4 A X
7o AT AR S e ) A A B B 1 ke TR
T AFAE R A R ™K 55, 2009) 5 A SCER
R E B BEAR T J7 1 km F J5 09 7 3 5 5 R R
B MR ) 1A N R B b IR B R B R IX
(H P 4§, 2003, 2015) . 25 & KL T iiFdh X &
AR HITI T 7 1 km IRE T ~3 km/s 1)
e AR T RE 5 AR e R AR K

FTE C—C A D—D' WM (E 7e.d) 43 i 4 s b
DX 1) B B R, A XU L BT B R - 1 A 2 A B
M DX Hb AR A R R X (R ESE, 2003;
BRILE, 200, ARAEVURAENE 2B
ARERIT ) AR P AR A S R U B AR PG ) 5 R R AR R 5
(XUSCANSE . 19965 B HFLICAE, 2009) » H 1Y 17 AR 73 5
R B LI L BT LRGSR L B e R i [
S, 2003) o AR UL LU ZR R M R Y R A 1 X
R KLU A 3 R B 3R 4 TR L RIB FE
R AR R A B IR, AR SCE R G RUBL LD 3R 1
~2 km VR JE B SCAL AR AR S IR B,
S5 R Hb L RE AR 25 51 PR T R A 1) e AU M XS
H R B TR R I I b DX RS T A 91 T 1) 25 9 T
AT REAE T U Ly b 3B B 00— L 8 A7 4 b XL 33X R 7
2 3 4l DX 50 2 3] AR B A PR 1 R TR D A

7 458

AR e M o B 22 B A R B AR BT 2022 ~
2023 AR [A] HE (Y 57 SR B0 R 0 —4E 2 1
T S R T S M P T )= M AR T ik BT AR
4 TIZIX 6 km DI = 4E b e bl R S5 4 . 45

SRR AT AR XN R i b M 5 A A B R Y
BRI A M, o B R R A R e RS v T E R M)
B4 » 38 22 [ P R g S ) B 4 s DX B T 4 i
TSRO R 2L 7 R 2 S 0] R AR R A R B SR
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Bee RS P4 1) 4 A BRI IR FE 29 1 km,
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TR R R E S IR A AR e 0 A JRUJEL L DX D)
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Abstract

Located in the Middle-LLower Yangtze River Metallogenic Belt, Tongling represents a unique ore
concentration area. The velocity structure of its shallow crust plays a crucial role in deciphering the
Mesozoic metallogenic processes of the entire ore district and holds considerable value for deep mineral
exploration. During 2022~ 2023, we deployed 57 temporary broadband stations with a minimum inter-
station distance of 2 ~5 km in eastern Tongling. We apply the continuous records to derive a high-
resolution three-dimensional shear-wave velocity structure of the upper-crust in the study region by
ambient noise surface tomography. The results show that the S-wave velocity in the shallow part of
Xuannan Sag is significantly lower than that of Tongling Uplift, and the boundary of S-wave velocity
anomalies delineates well the occurrence of the Dinggiao-Daihui Fault, which dips southeastward and
extends to a depth of ~3 km. The S-wave velocity below 1 km depth of the Tongling uplift is higher
(~3 km/s) than that of the Xuannan sag, implying possible intrusions of large-scale granities in the
Tongling uplift. These intrusions display a dome-like laccolith beneath the Xinqgiao and Shizishan, and a
sill-like bedrock in the southern Fenghuangshan region. The results are of great significance for
understanding the metallogenic dynamic process of the Tongling ore concentration area, and also provide

new evidence for the magmatic underplating model of the Middle-LLower Yangtze River Metallogenic Belt.

Key words: Ambient noise surface wave tomography; upper crustal S-wave velocity; Tongling ore

concentration area; metallogenic model



